Dear Secretary Austin,

We write in strong support of the Mid-Atlantic Semiconductor Collaborative (MASC) proposal, led by the University of Maryland, College Park and Booz Allen Hamilton, in response to the Department of Defense (DoD) Microelectronic Commons solicitation. This collaboration includes some of the leading experts in microelectronics development and manufacturing and is uniquely positioned to advance microelectronics technologies in fields critical to the DoD.

MASC includes a broad and diverse group of universities, community colleges, Historically-Black Colleges and Universities (HBCU), small businesses, and defense industry partners from across the Mid-Atlantic, including: the University of Virginia, Virginia Polytechnic Institute, Pennsylvania State University, Carnegie Mellon University, University of Pennsylvania, Johns Hopkins University, Morgan State University, Montgomery College, Princeton University, University of Delaware, Duke University, North Carolina State University, North Carolina Agricultural and Technical University, West Virginia University, Northrop Grumman, Lockheed Martin, Intel, L3Harris, NASA Goddard Space Flight Center, and Global Foundries, among many others. This talented team will work with the national security enterprise to design, fabricate, and test microelectronics in five key areas of priority to the DoD; quantum, electronic warfare, artificial intelligence, 5G/6G, and secure edge computing.

MASC seeks to strengthen the prototyping network in the Mid-Atlantic states that sit in close geographic proximity to federal defense agencies, defense laboratories, and defense contractors. The MASC collaborators will work closely with domestic semiconductor manufacturers to help innovative DoD concepts get fast and timely fabrication access. They will also create opportunities for investments in local semiconductor manufacturing facilities at universities and small businesses. This would allow for rapid design and innovation, speeding up the development of semiconductor technologies for the DoD in addition to the private sector. Consequently, this network will have significant economic impacts on the Mid-Atlantic region, supporting the growth of small and large businesses with both defense and commercial applications.

Finally, MASC will prioritize growing and diversifying the US microelectronics workforce, particularly in semiconductor manufacturing with defense applications. MASC’s university, community college, and HBCU members, who educate thousands of STEM students, will partner with semiconductor manufacturers and federal defense agencies to develop workforce
pipelines focused on microelectronics development and manufacturing of high priority to the Department. By exposing their students to real world national security challenges, MASC will help recruit talented and underrepresented students into these high-need fields.

The MASC collaboration will address critical microelectronics technology needs of our national security enterprise. Their colocation with our national security agencies and defense laboratories provides a first-of-its-kind opportunity to establish a network of rapid prototyping and innovation with secure and trusted capabilities for the DoD. This will create a unique and synergistic environment for the future of DoD microelectronics innovation. We urge your full and fair consideration of the MASC proposal and ask you to contact our offices with any questions you may have.

Sincerely,

Chris Van Hollen
United States Senator

C. A. Dutch Ruppersberger
Member of Congress

Mark R. Warner
United States Senator

Glenn "GT" Thompson
Member of Congress

Shelley Moore Capito
United States Senator

Thom Tillis
United States Senator

Dwight Evans
Member of Congress

Jamie Raskin
Member of Congress
David J. Trone
Member of Congress

Glenn Ivey
Member of Congress

Kweisi Mfume
Member of Congress

Summer Lee
Member of Congress

Gerald E. Connolly
Member of Congress

John Fetterman
United States Senator

Christopher A. Coons
United States Senator